[seminar] Making Robots See and Manipulate
김범준 교수님의 세미나
Making Robots See and Manipulate
내용을 기록했습니다.
- Continuous motion level reasoning: Feasibility check가 필수적이며, 이는 computation expensive.
- Idea: Learn to guide Planning \(\rightarrow \red{\text{MCTS+RL}}\)
- Tree search + Value function, policy to guide the search.
- 어떠한 물체를 어떻게, 어디로 옮겨야 하는지 geometric reasoning에 기반한 planning을 수행함.
- Idea: Learn to guide Planning \(\rightarrow \red{\text{MCTS+RL}}\)
그러나 real world에서 로봇을 연구해보니, perceive, manipulate 하는 기본적인 능력이 전혀 없다.
- General Purpose Robot 연구를 위한 필수 요소
- \[\red{\text{Perceive and Manipulate Object}}\]
- Solve Long-horizon sequential
- Add Semantic, Common sense
Today’s topic is the first thing.
- 교수님의 보통 아이디어 building: 큰 문제 \(\rightarrow\) 작은 문제로 나눔.
- Limited action repertorie
- Representation and perception - How do I represent obejct states?
- Big data for robotics - How do we efficiently generate one for robots?
그러나 많은 manipulation 연구가 Pick-n-Place라는 skill에만 국한됨; Prehensile manipulation에 치중되어 있음.
- Intuition: Not all objects are graspable.
- Previous approaches: Physics modeling + Planning으로 해결함.
- Limitation:
- Estimating the properties from RGB images is extremely difficult.
- Modeling contact is still an active area of research. They make simplifying assumptions.
- Planning trajecories take significant amount of time.
- Limitation:
1. Limited action repertorie: Non-Prehensile Tasks
Manipulation System
Pre and Post-Contact Policy Decomposition for Non-Prehensile Manipulation with Zero-Shot Sim-To-Real Transfer: IROS 2023 paper;
- 너무 크거나 너무 납작한 물체를 밀어서 Pose를 조정함.
- 단차가 있는 벽 위로 물체를 옮겨야 할 때에.
Limitation:
- requires a lot of data: isaac sim
- Exploration is extremly hard for non-prehensile manipulation;
- 기존의 Task definition; The manipulatee is always in close proximity to the manipulator
- Contact inducing reward를 추가할 수 있음. 다만, 잘 설계해야 함. It may make an ineffective contact.
Approach:
- Divided into two stages: 1. Pre-contact phase / 2. Post-contact phase; Tow distint policies.
- Pre-contact policy Action space; 물체 위의 어느 point에 놓을 것인가, contact point에 대한 RL
- Post-contact policy Action space; Target end-effector pose (Time-varying Impedance control)
Whole-Body Manipulation
How to learn Simultaneout balancing and manipulation
- Hierarchical policy decomposition + curriculum leraning (이전에는 Series로 수행되었음.)
Lesson learned:
- Modularity가 중요하다. 이것이 more efficient learning을 가능하게 함.
- Manipulator에서는 Action space를 따로 정의하는 것이 Exploration에서 더 효율적이었으며, Debug 과정에서 수월함.
2. Representation and perception - How do I represent obejct states?
움직이는 motion 자체가 너무 느리다. Hardware 자체적인 성능도 아직은 너무 뒤떨어진다. 훨신 빠르고 Dynamic하게 + Learning purposed에 맞춰서 제작하고자 함.
Intuition; How do I represent object states?
- Setup: Three cameras.
-
Estimating the 3D Spatial occupancy is important; Encoder of a
Shape completion algorithm
- 어떠한 Signal이 [high/Low]-value representation에 영향을 끼치는가?
- Contact presence와 Loaction이 매우 중요함.
CORN: Contact-based Object Representation
- Patch Transformer
- estimated shape \(\rightarrow\) RRT + Grasping (Contact-based)
3. Big data for robotics - How do we efficiently generate one for robots?
- Big data in simulator:
- But, Collision Detection이 Non-convex object에 대해서 too slow
- Contact Detection in the simulator is too slow for non-convex object.
- GJK cannot leverage the parallel compuation.
- Shape encoder \(\rightarrow\) Collision Predictor; A lot of 3D assets to train this.
- But, Collision Detection이 Non-convex object에 대해서 too slow
- Contribution: Local similarity.
- Contact이 Local geometric에서는 매우 비슷한 양상을 보임.
질문:
Q. 흡착형은 어때요? A. 오염이 자주 됨.
Enjoy Reading This Article?
Here are some more articles you might like to read next: